CRC for Water Sensitive Cities

4th water sensitive cities conference

Australian Go Department of Business Cooperative Researc Centres Programme

The state of climate science for informing urban cooling

Dr. Kerry Nice University of Melbourne Monash University CRCWSC

26-28 March 2019

Urban heat impacts Climate Change Global Regional Cities Urban heat Urban cooling

Urban heat: impacts, or why this is important

Impacts of urban heat are wide ranging including:

Increased mortality and morbidity, especially among children and elderly.

Impacts on mental health, increased suicides, domestic violence, road rage

Increased strain on health and emergency services

Increased power consumption, carbon emissions, consumer financial costs, increased anthropogenic heat

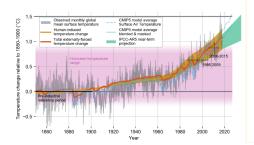
Increased air pollution, then further impacting health

Social inequity (air conditioner vs. non air conditioner, leafy vs. non-leafy)

Damage to urban infrastructure (rail lines, roads, etc.)

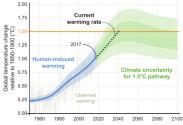
Strain on urban vegetation

Fires


Increased water usage

Economic costs due to disruption to work activities, agriculture/horticulture damages, power outages

Hartan and Ruddell (2011); Zuo et al. (2015); Nicholls et al. (2008); Burke et al. (2018) Water Sensitive Cities 4th water sensitive cities conference

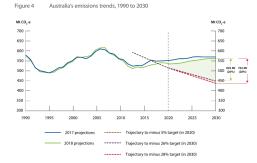

Climate Change: Global trends

Warming currently at 1.0C. Could reach 1.5C before 2040. 1.5C is a political goal. Already seeing impacts at 1.0C.

FAQ1.2: How close are we to 1.5°C?

Human-induced warming reached approximately 1°C above pre-industrial levels in 2017

Allen et al. (2018)

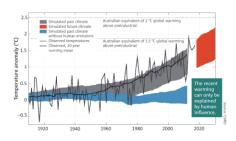


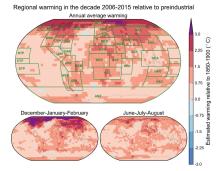
4th water sensitive cities conference

Climate change: Can we limit warming to 1.5C?

Paris commitments (by largest emitters) already inadequate for 2.0C (Lewis et al., 2019). 2.0-4.9C by 2100 most likely (Raftery et al., 2017). Largest uncertainty in climate change is emissions pathway. Requires immediate and drastic reductions to meet Paris agreement - Australia not on track.

Overall change since the 2017 projections

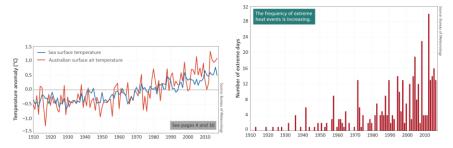



Commonwealth of Australia (2018)

Climate change: regional impacts

Australia has already experienced approx 1.0C warming. Some regions have experienced greater warming (i.e. Arctic region).

CSIRO and Bureau of Meteorology (2018); Allen et al. (2018)

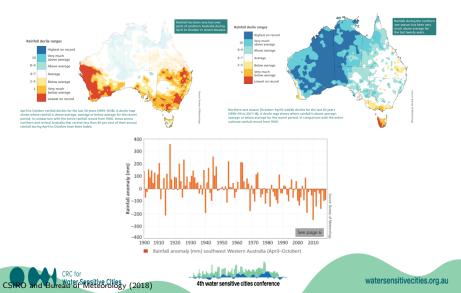


CRC for Water Sensitive Cities

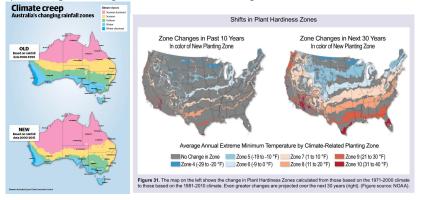
4th water sensitive cities conference

Australia's shifting climate: temperature

Australia has experienced rising temperatures and frequency of extreme heat events. Adaptation strategies must account for anticipated ranges of temperatures and increased extremes.


CSIRO and Bureau of Meteorology (2018)

4th water sensitive cities conference


Australia's shifting climate: rainfall

Australia has experienced shifts in rainfall patterns, locations and amounts.

Shifts in climate zones, impacts on vegetation

Shifts in climate are impacting types of vegetation that can be grown in regions. Some species might no longer be suitable as urban vegetation in the future.

http://www.pleanetwork.com.au/wp-content/uploads/2016/03/Australia-Changing-climate-zones.jpg, Walsh et al. (2014)

ive cities confere

Australia's shifting climate: impacts at cities level

Different emissions pathways, RCP4.5 (moderate emission reduction) and RCP8.5 (no reductions) will have varying impacts on

future temperatures and extreme events.

Table 11-X Average warming and range of warming (various models) for the capital cities, 2030 and 2090 (°C).

	2030 RCP4.5	2090 RCP4.5	2090 RCP8.5
Adelaide	0.7 (0.5-0.9)	1.5 (1.0-1.9)	2.9 (2.4-3.9)
Brisbane	0.9 (0.6-1.2)	1.8 (1.2-2.6)	3.7 (2.5-4.7)
Canberra	0.8 (0.6-1.1)	1.8 (1.3-2.4)	3.8 (2.7-4.5)
Darwin	0.9 (0.6-1.3)	1.8 (1.3-2.8)	3.7 (2.8-5.1)
Hobart	0.6 (0.4-1.0)	1.4 (0.9-1.9)	2.9 (2.3-4.0)
Melbourne	0.6 (0.5-0.9)	1.5 (1.1-1.9)	3.0 (2.4-3.8)
Perth	0.8 (0.6-1.0)	1.7 (1.1-2.1)	3.5 (2.6-4.2)
Sydney	0.9 (0.6-1.1)	1.9 (1.3-2.5)	3.7 (2.9-4.6)

Source data: Webb and Hennessy (2015).

Table 11-X1 Projected frequency and spread of frequencies (various models) of extremely hot summer days (>40 °C) for Australian capital cities.

	Current	2030 RCP4.5	2090 RCP4.5	2090 RCP8.5
Adelaide	3.7	5.9 (4.7-7.2)	9.0 (6.8-12)	16 (12-22)
Brisbane	0.8	1.2 (1.1-1.6)	2.1 (1.5-3.9)	6.0 (2.9-11)
Canberra	0.3	0.6 (0.4-0.8)	1.4 (0.8-2.8)	4.8 (2.3-7.5)
Darwin	0.0	0.0 (0.0-0.0)	0.0 (0.0-0.2)	1.3 (0.2-11)
Hobart (>35°C)	1.6	2.0 (1.9-2.1)	2.6 (2.0-3.1)	4.2 (3.2-6.3)
Melbourne	1.6	2.4 (2.1-3.0)	3.6 (2.8-4.9)	6.8 (4.6-11)
Perth	4	6.7 (5.4-7.5)	9.7 (6.9-13)	20 (12-25)
Sydney	0.3	0.5 (0.5-0.8)	0.9 (0.8-1.3)	2.0 (1.3-3.3)

Source data: Webb and Hennessy (2015).

th water sensitive cities conference

Urban Heat: factors leading to increased urban heat island

In addition to climate change, city design also contributes to urban heat effects.

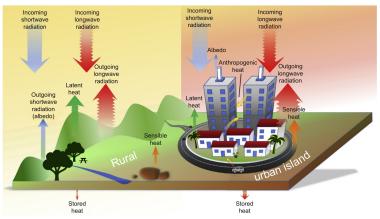


FIGURE 19.2 Schematic depiction of energy flux in urban area. Graphic by Alison Vieritz, adapted from Oke, T.R., 1988. The urban energy balance. Progress in Physical Geography 12, 471–508.

4th water sensitive cities conference

Jamei and Tapper (2019) watersensitivecities.org.au

Urban Heat: factors leading to increased urban heat island

Urban vegetation can reduce UHI while impervious surfaces can exacerbate UHI effects.

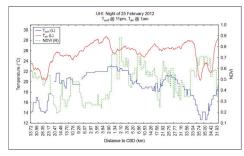


Figure 13: West-east UHI transect 25 February 2012. The air temperature transect is corrected to 1am. The MODIS surface temperature data corresponds to 1.05am. NDVI values indicate fraction of vegetation core. CBD was taken as 37" 48" 51.0906"; 144" 57" 47.2782" (intersection of Swanson St and Bourke St, Melbourne).

Table 5: Average LSTs of the major land surface types for the City of Port Phillip focus areas.

South Melbourne	DAY (°C)	St. Dev. (°C)	NIGHT (°C)	St. Dev. (°C)
Concrete	50.45	7.66	31.63	5.26
Irrigated grass	42.81	8.34	25.59	3.92
Non irrigated grass	48.00	6.80	26.27	3.74
Road	48.83	7.63	29.16	4.28
Tile roof	52.20	7.82	30.35	4.35
Galv. steel roof	51.95	11.20	26.53	8.60
Trees	41.59	6.66	26.62	2.90
Water	44.41	7.97	27.72	3.90
AVERAGE	47.53		27.98	
Middle Park	DAY (°C)	St. Dev. (°C)	NIGHT (°C)	St. Dev. (°C)
middle Failt	DAT (0)	31. Dev. (C)	NiGHT (C)	31. Dev. (C)
Concrete	50.22	7.61	28.69	4.97
Concrete	50.22	7.61	28.69	4.97
Concrete Irrigated grass	50.22 45.56	7.61 7.75	28.69 26.04	4.97 4.57
Concrete Irrigated grass Non irrigated grass	50.22 45.56 49.14	7.61 7.75 6.54	28.69 26.04 24.94	4.97 4.57 3.14
Concrete Irrigated grass Non irrigated grass Road	50.22 45.56 49.14 51.14	7.61 7.75 6.54 7.00	28.69 26.04 24.94 28.20	4.97 4.57 3.14 3.46
Concrete Irrigated grass Non irrigated grass Road Tile roof	50.22 45.56 49.14 51.14 53.54	7.61 7.75 6.54 7.00 7.18	28.69 26.04 24.94 28.20 28.69	4.97 4.57 3.14 3.46 3.90
Concrete Irrigated grass Non irrigated grass Road Tile roof Tin roof	50.22 45.56 49.14 51.14 53.54 52.95	7.61 7.75 6.54 7.00 7.18 9.01	28.69 26.04 24.94 28.20 28.69 28.38	4.97 4.57 3.14 3.46 3.90 6.89

Coutts and Harris (2013)

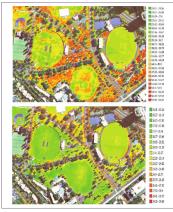
ater Sensitive Cities

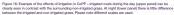
4th water sensitive cities conference

Urban Heat: Green infrastructure

Numerous studies show heat mitigation effects due to green infrastructure. Perhaps 0.5-2C reductions in air temperature, 5-20C reductions in surface temperatures, thermal comfort indexes. Jamei and Tapper (2019)

City	Climate	Findings	
Tel-Aviv, Israel	Mediterranean	Shading from the increased tree canopy coverage contributed to 80% of the overall cooling effect (Shashua-Bar and Hoffman, 2003)	
Bangalore, India Tropical	Tropical	5.6°C temperature difference between the sections of the streets with trees and without trees (Valishery et al., 2013)	
Hong Kong	Humid-subtropical	15% increase in tree coverage resulted in 5.6°C temperature reduction (Ng et al.,2012)	
Saga, Japan	Humid-subtropical	20% increase in the number of the trees resulted in 2.27°C reduction in maximum temperature (Srivanit and Hokao, 2013)	TABLE 19. and Impro
Singapore	Hot-humid	From 1.5 to 2.8°C lower air temperature under tree canopies (Nichol, 1996)	City
Kumamoto, Japan	Humid-subtropical	3.8°C lower air temperature under tree canopies (Saito et al., 1990)	Freiburg,
Serdang, Malaysia	Hot-humid	Trees with high values of leaf area index contribute to lower air temperatures (Shahidan et al., 2010)	Germany Hong Kong
Ghardai, Algeria	Subtropical-desert	Shading trees significantly improve the pedestrian thermal comfort (Ali-Toudert and Mayer, 2007)	Hong Kong
Beijing, China	Humid-continental	Tree canopy coverage and shading level significantly influence the thermal comfort (Vin et al., 2012)	Taipei, Taiw
Sao Paulo, Brazil	Humid-subtropical	Thermal comfort index (Temperature of Equivalent Perception, TEP) was improved by 10°C (Johansson et al., 2013)	Athens, Gre
Mendoza, Argentina	Mid latitude desert	Green infrastructure along the street significantly improved the thermal condition (Corres et al., 2012)	Melbourne,
Shanghai	Humid-subtropical	Dense tree or grass on the pavement contributed to a significant reduction (Varg et al., 2011)	Australia Singapore
Sao Paulo, Brazil	Humid-subtropical	12*C reduction in thermal comfort index (physiological equivalent temperature, PET) level (Spangerberg et al., 2008)	Taipei, Taiw
London, UK	Temperature- oceanic	1°C reduction in the air temperature as a result of installing green roofs (Virk et al., 2015)	Addis Ababa Ethiopia
Toronto, Canada	Semi-continental	0.4°C reduction in the air temperature as a result of installing green rooks (Berard), 2016)	Florida, Uni States
Madrid, Spain	Mediterranean	Only a moderate effect of green roofs on the surounding microclimate, but a large contribution when combined with vegetation at pedestrian level (Alcazar et al., 2016)	Netherlands Europe
Tehran, Iran	Dry-summer subtropical	Average air temperature above the green roof was 3.06–3.7°C cooler than that of the reference roof (Moghbel and Erianian Salim, 2017)	Sacramento Vancouver
Adelaide, Australia	Mediterranean	Significant cooling effects in summer as a result of green roofs, green walls, street trees and other water sensitive urban design strategies (Razzaghmanesh et al., 2016)	Athens, Gre
Padua, Italy	Humid sub-tropical	The "Green ground" scenario allows up to 1.4 and 3°C decrease in air temperature during the night and day, respectively (Noro and Lazzarin, 2015)	Gothenburg Sweden
Paris, France	Oceanic climate	0.79°C reduction in the air temperature as a result of green pavement (Hendel et al., 2016)	Sacramento Vancouver
Nottingham, UK	Oceanic climate	Green wall enabled 6.1°C temperature reduction in sunny days compared with bare wall (Cuce, 2017)	Athens, Gre
Cosenza, Italy	Oceanic climate	Vegetated roof was able to halve summer daily temperature excursions (Bevilacipa et al., 2017)	Singapore
Kuala Lumpur, Malaysia	Tropical	Urban greening resulted in 4°C reduction in the air temperature (Aflaki et al., 2017)	Mexico
Phoenix, United States	Warm humid continental	Urban trees reduced the air temperature by about 1-5°C (Upreti et al., 2017)	Japan
Montreal, Canada	Continental	Tree cover reduced the air temperature at the tree level by 4 and 2°C at 60 m from the ground (Wang and Alduari, 2016)	Tokyo, Japar


TABLE 19.1 Studies Conducted on the Effectiveness of Green Infrastructure in Mitigating Urban Heat Island (UHI) and Improving Thermal Comfort—cont'd


City	Climate	Findings
Freiburg, Germany	Mediterranean	Trees on grasslands lead to 2.7 K (2.7 C) reduction in the air temperature (i.ee et al., 2016)
Hong Kong	Humid-subtropical	Roadside trees reduced the thermal comfort index (PET) to 29 4°C in urban areas (Tan et al., 2017)
Hong Kong	Humid-subtropical	Trees with a large crown, short trunk, and dense canopy are the most efficient in miti- gating the UHI effect (kiong et al., 2017)
Taipei, Taiwan	Humid-subtropical	Urban parks were 0.81 K (0.81°C) cooler than their surrounding built-up areas (Bowler et al., 2010)
Athens, Greece	Subtropical Mediterranean	The average nightlime and daytime park cool island varied between 0.7 K (0.7*C) and 2.6 K (2.6*C), respectively (Sloufika et al., 2014)
Melbourne, Australia	Oceanic	2.5°C temperature difference between an urban park and its surrounding areas (Torok et al., 2001)
Singapore	Hot-humid	Large urban parks significantly mitigated the UHI effect (forsyth et al., 2005)
Taipei, Taiwan	Humid-subtropical	The park cooling effect largely depends on the evapotranspiration rate of the trees in- side the park (Chang and Li, 2014)
Addis Ababa, Ethiopia	Subtropical- highland	The park cooling effect is a variable of the park area (Feyisa et al., 2014)
Florida, United States	Humid-subtropical	Lower air temperature under the shade of the trees compared to the surrounding areas (Some and Vieira, 2003)
Netherlands, Europe	Temperate	Improvement in the thermal comfort index (PET) by 5 K (5°C) as a result of grassland (Klemm et al., 2015)
Sacramento and Vancouver	Meditemanean- oceanic	Frequent irrigation produced from 1 to 2°C and 5 to 7°C cooling effect in Vancouver and Sacramento, respectively (Sprorken-Smith, 1993)
Athens, Greece	Subtropical Mediterranean	Park cooling effect was reduced because of congested areas and traffic in the surround- ing area of a large urban park (Zoulia et al., 2009)
Gothenburg, Sweden	Oceanic	High-rise buildings in surrounding area of urban parks reduce the cooling impact of parks (Upmanis and Chen, 1993)
Sacramento and Vancouver	Meditemanean- oceanic	The park cooling impact extended equal to the width of the park (Specificen-Smith, 1994)
Athens, Greece	Subtropical- Mediterranean	The greatest zone of influence for park cooling effect extended downwind from the park (Dimoudi and Nicolopoulou, 2003)
Singapore	Hot-humid	Areas close to parks were on average 1.3 K (1.3*C) cooler than the surrounding areas (Yu and Hien, 2006)
Mexico	Humid-subtropical	The park cooling impact with the area of 500 ha extended equal to the width of the park (2 km) (havegot, 1990)
Japan	Humid-subtropical	The park cooling impact with the area of 100 and 400 m ² estends to 300 and 400 m, respectively (Honjo and Takakura, 1990)
Tokyo, Japan	Humid-subtropical	The park cooling impact with an area of 0.6 km ² was found to be 1.58°C, extending for 1 km (Ca et al., 1996)

s.org.au

Urban Heat: vegetation and irrigation

Irrigated grass can have large surface temperature cooling impacts during the day but small effects at night. Trees also have large cooling effect during the day.

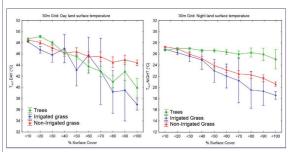
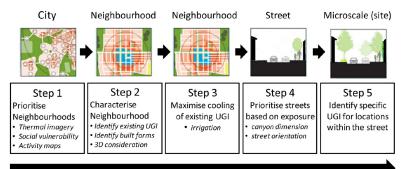



Figure 18: Relationships between per cent tree cover, per cent irrigated grass cover and per cent non-irrigated grass cover with land surface temperature during the day (left panel) and night (right panel), divided into 10 per cent categories. Error bars denote 95 per cent confidence level.

4th water sensitive cities conference

Framework for optimizing cooling benefits

Prioritisation Framework for optimising UGI cooling benefit

Norton et al. (2015)

4th water sensitive cities conference

Most effective use of street trees

Nor

Canyon		Prioristation: Street Trees						Canyo			
Width											Orienta
Vour Wi	de 40 m	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	E-W
Very Wi	ue 40 m	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	N-S
XX/2 J -	20	0.13	0.27	0.40	0.53	0.67	0.80	0.93	1.07	1.20	E-W
Wide	30 m	0.13	0.27	0.40	0.53	0.67	0.80	0.93	1.07	1.20	N-S
Maillion	20	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	E-W
Medium	20 m	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	N-S
Name	10	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	E-W
Narrow	10 m	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	N-S
	Metres	4	8	12	16	20	24	28	32	36	Metres
	Store ys	1	2	3	4	5	6	7	8	9	Storeys
			Low			Mediun	n		Tall		
					Car	nyon He	ight				
	High priority		M	loderate	priority		L	ower pri	ority	Ν	Not a prior
al (2015)				l.c.	Literado						

.au

Recommendations for urban green infrastructure

Table 2

Modes of cooling provided by different urban green infrastructure options during summer and priority locations to optimise those cooling benefits.

UGI	Green open spaces	Trees	Green roofs	Vertical greening
Shades canyon surfaces?	Yes, if grass rather than concrete	Yes	Shades roof, not internal canyon surfaces	Yes
Shades people?	Yes, if treed	Yes	No, only very intensive green roofs	No
Increases solar reflectivity?	Yes, when grassed	Yes	Yes, if plants healthy	Yes
Evapo-transpirative cooling?	Yes, with water Yes		Yes, with water when hot	Yes, with water when hot
	No, without water	(unless severe drought)	No, without water	No, without water
Priority locations	 Wide streets with low buildings – both sides Wide streets with tall buildings – sunny side 	 Wide streets, low buildings – both sides Wide streets, tall buildings – sunny side In green open spaces 	 Sun exposed roofs Poor insulated buildings Low, large buildings Dense areas with little available ground space 	Canyon walls with direct sunlight Narrow or wide canyons where trees are unviable

Norton et al. (2015)

4th water sensitive cities conference

Bibliography

- Allen, M., Dube, O., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K. (2018). Framing and Context. In Global Warming of 1.5C. An IPCC Special Report on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, chapter 1.
- Burke, M., González, F., Baylis, P., Heft-Neal, S., Baysan, C., Basu, S., and Hsiang, S. (2018). Higher temperatures increase suicide rates in the United States and Mexico. Nature Climate Change, 8(8):723–729.
- Commonwealth of Australia (2018). Australia's emissions projections 2018. Technical report, Australian Government Department of Environment and Energy.
- Coutts, A. M. and Harris, R. (2013). A multi-scale assessment of urban heating in Melbourne during an extreme heat event: policy approaches for adaptation. Technical report, Victorian Centre for Climate Change Adaptation Research.
- CSIRO and Bureau of Meteorology (2018). State of the Climate 2018. Technical report.
- Harlan, S. L. and Ruddell, D. M. (2011). Climate change and health in cities: impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. *Current Opinion in Environmental Sustainability*, 3:126–134.
- Jamei, E. and Tapper, N. (2019). WSUD and Urban Heat Island Effect Mitigation. In Approaches to Water Sensitive Urban Design, chapter 19, pages 381–407. Elsevier Inc.
- Lewis, S. C., Perkins-Kirkpatrick, S. E., Althor, G., King, A. D., and Kemp, L. (2019). Assessing contributions of major emitters' Paris-era decisions to future temperature extremes. *Geophysical Research Letters*.
- Nicholls, N., Skinner, C., Loughnan, M., and Tapper, N. (2008). A simple heat alert system for Melbourne, Australia. International Journal of Biometeorology, 52(5):375–84.
- Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., and Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. *Landscape and Urban Planning*, 134:127–138.
- Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., and Liu, P. (2017). Less than 2C warming by 2100 unlikely. Nature Climate Change.
- Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., Thorne, P., Vose, R., Wehner, M., Willis, J., Anderson, D., Kharin, V., Knutson, T., Landerer, F., Lenton, T., Kennedy, J., and Somerville, R. (2014). Appendix 3: Climate Science Supplement. In Meililo, J. M., Richmond, T. T., and Yohe, G. W., editors, *Climate Change Impacts in the United States: The Third National Climate Assessment*, pages 735–789. U.S. Global Change Research Program.
- Zuo, J., Pullen, S., Palmer, J., Bennetts, H., Chileshe, N., and Ma, T. (2015). Impacts of heat waves and corresponding measures: a review. Journal of Cleaner Production, 92:1–12.

Questions? www.menti.com 51 48 05

tive cities conference