CRC for Water Sensitive Cities

Sludge Fermentation

On-Site Production of VFAs for PPB Nutrient Recovery

Robert Hoelzle¹, Daniel Puyol¹, Tim Huelsen¹, Bernardino Virdis^{1,2}, and Damien Batstone¹ ¹AWMC, University of Queensland ²CEMES, University of Queensland

Program C: Future Technologies

Project C2.1: Resource Recovery from Wastewater

1000), PO₄-P (x10)) (mg/L) 800 600

PPB Growth in Carbon-limited System

Introduction

Purple phototrophic bacteria (PPB) are able to efficiently remove nitrogen and phosphorus from wastewater to discharge limits. However, standard domestic wastewater COD:N:P ratios of 300:50:10 are unbalanced in COD, limiting PPB growth

and N and P uptake efficiency. COD must be added to the feed stream to an optimal ratio of 100:8:1.2 in order to make up this deficiency (Fig 1).

Fermentation of PPB sludge produces soluble organics that can be recycle to the main process for achieving optimal COD/N/P ratio. However, ammonia production must be managed to ensure that the COD:N ratio is increased to enable full uptake of N and P. In this study, we aim to optimise sludge fermentation for maximum fermentation product generation with minimal ammonia production.

acetate (SCOD) while consuming ammonia (NH₄-N) in batch system.

Figure 2: Molar yields of H₂ and CO₂ through culture enrichment.

Method

- Enrichment: Thermophilic sludge (*Inoculum 1*) & anaerobic granular sludge (*Inoculum 2*) + 4 substrate spikes.
- Experimental conditions: 1% VS substrate, 2.5% VS inoculum. 5 d. 30, 37, 55°C (Inoculum 1) & 30°C (Inoculum 2)
- <u>Substrate</u>: PPB biomass, waste activated sludge (WAS), Algae biomass, + Control (glucose)
- Analytical: VFA, alcohols, NH4-N, biogas.

Preliminary Results

✓ **Successful enrichment** after 4 spikes: \uparrow CO2 and ≈H2 yields (Fig 2)

- **Initial screening**: First 2 d fermentation dominates. Methanogenesis prevails onwards (Fig 3)
- ✓ Full analysis of enrichment, screening and fermentation experiments is currently ongoing

Figure 3: Ratio of H₂ to CH₄ production and total production of CO₂ from initial screening experiment at different digestion times.

www.watersensitivecities.org.au

