

Workshop 3 - Outline on ground opportunities

- Welcome
- Workshop 2 Recap
- On-ground challenges, opportunities, solutions
- Revisit Principals
- Next Steps

Workshop 2 - Recap

CAMPSIE, NOVEMBER 22, 2018

Purpose:

- Identify principles for development
- Apply to case study areas in Campsie & Marrickville
- Identify challenges and opportunities

Site Challenges Identified:

- Water & wastewater system capacity constraints
- Flooding, drainage issues and changing climate
- Cooks River water quality and local visual connection
- Connecting communities to water and open space
- Lack of greening
- Urban Heat Island

Workshop 2 - Recap

CAMPSIE, NOVEMBER 22, 2018

Opportunities:

- Locally sourced water from stormwater & wastewater systems
- Increasing urban greening, cooling through connecting grids
- Connecting communities to water and open space
- Multipurpose open spaces for flooding, drainage function
- Cooks River water quality and local visual physical connection
- Opportunity to influence new development

Workshop 2 - Recap

MARRICKVILLE, NOVEMBER 23, 2018

Purpose:

- Identify principles for development
- Apply to case study areas in Campsie & Marrickville
- Identify challenges and opportunities

Site Challenges Identified:

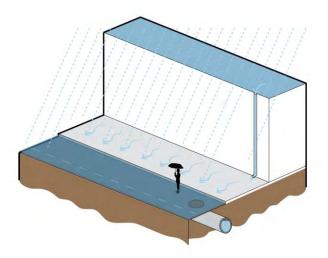
- Water & wastewater system issues and impacts sea level rise
- Flooding, drainage issues and changing climate
- Cooks River water quality issues storm and waste water
- Connecting communities to water and open space
- Lack of greening and urban ecology
- Urban Heat Island

Workshop 2 - Recap MARRICKVILLE, NOVEMBER 23, 2018

Opportunities:

- Increasing resilience through urban greening and cooling
- Reduce imperviousness to reduce run off
- Sustainable Streets retrofit with water sensitive gardens
- Locally sourced water from stormwater & wastewater systems
- Connecting communities to water and open space
- Multipurpose open spaces for flooding, drainage function
- Cooks River water quality and local visual physical connection
- Opportunity to influence new development

On-Ground Challenges

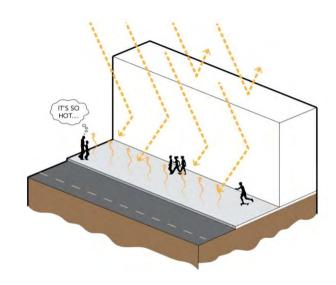

On Ground - Challenges

Flooding & Water Quality:

- Large impervious area:
 - High impervious area made up of roofs, paths, driveways roads
 - Sediment, nutrient, sewerage overflow flow untreated to waterways
- Insufficient Drainage:
 - Low drainage conveyance capacity, low lying land
 - Poor overland flow conveyance caused by landform, railway
- Changing climate:
 - Increase in rainfall intensity and sea level rise

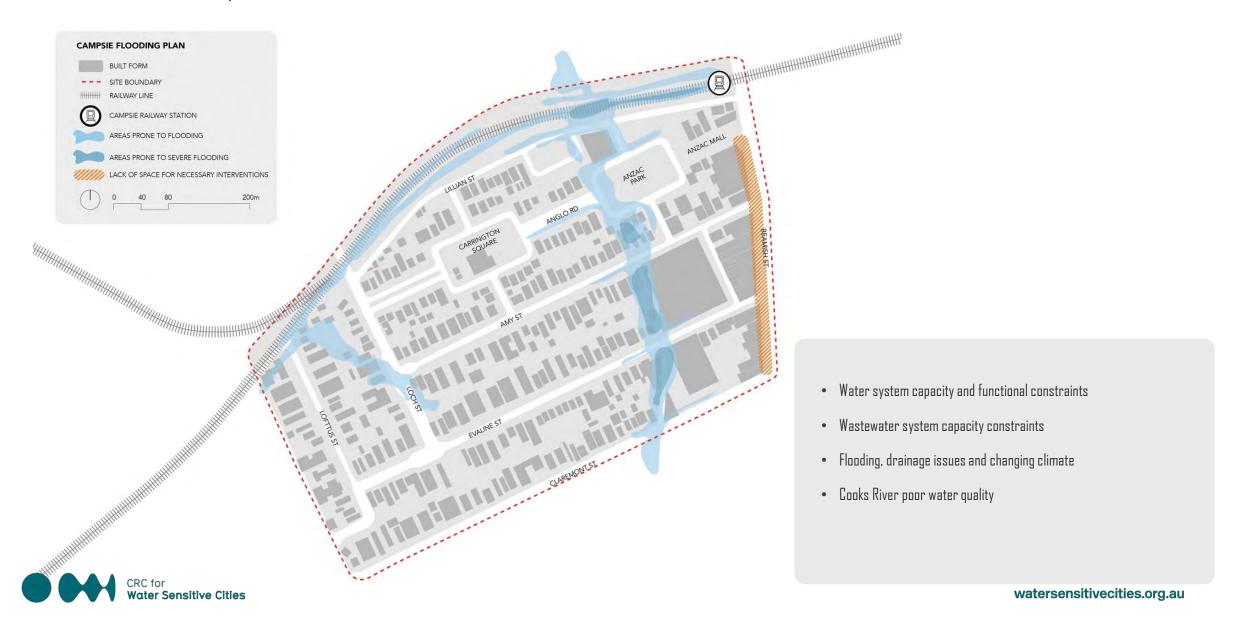
Water Servicing:

- Capacity constraints:
 - Increased demand on waste water and water supply networks

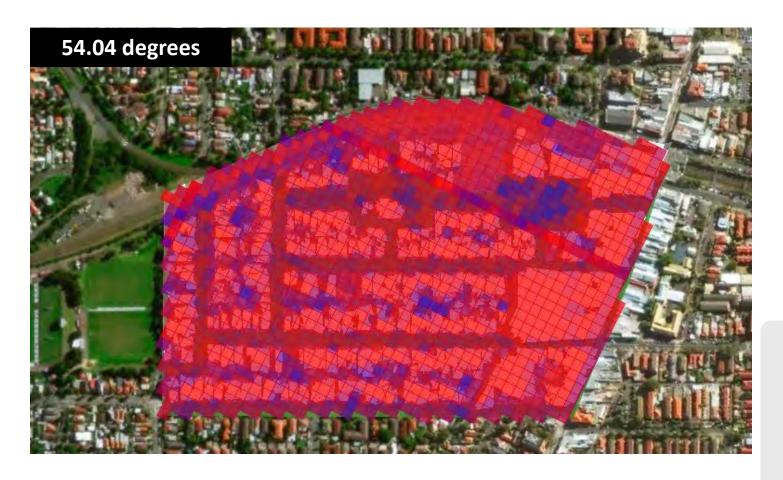

On Ground - Challenges

<u>Urban Heat:</u>

- Heat absorption:
 - Abundance of hard surfaces
 - Lack of vegetation
 - Diminishing open space
- Lack of shade:
 - Poor tree selection
 - Lack of street trees


Amenity:

- Dominant built form:
 - Minimal connectivity to greenery
 - Poor connectivity to water
- Solar reflection:
 - Lack of greenery
 - Poor building design and material selection

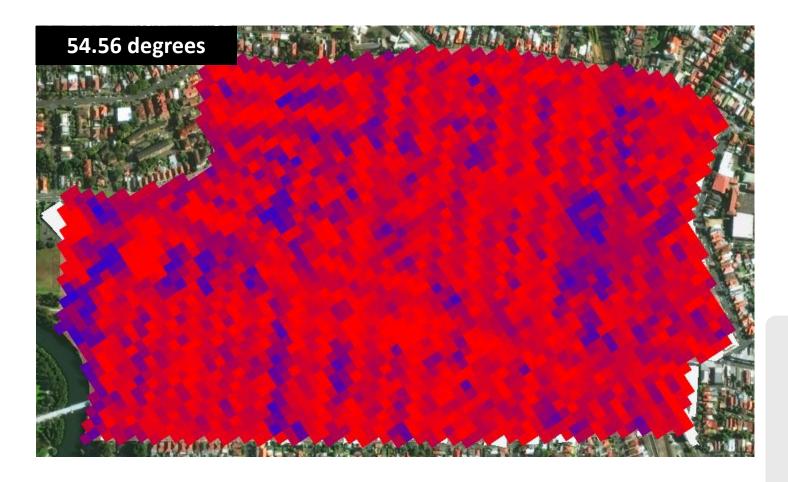


On Ground – Challenges CAMPSIE – FLOODING, WATER QUALITY AND WATER SERVICES

On Ground – Challenges

CAMPSIE - URBAN HEAT AND AMENITY

- Cooks River low visual and physical connection
- Low community connection to water & open space
- Lack of greening
- Urban Heat Island



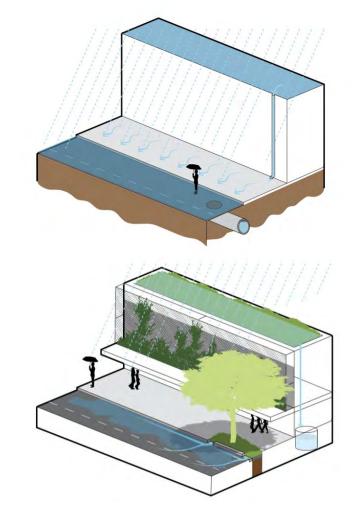
On Ground – Challenges MARRICKVILLE – FLOODING, WATER QUALITY AND WATER SERVICES

On Ground – Challenges

MARRICKVILLE - HEAT AND AMENITY

- Cooks River low visual and physical connection
- Low community connection to water & open space
- Lack of greening
- Urban Heat Island

On-Ground Opportunities



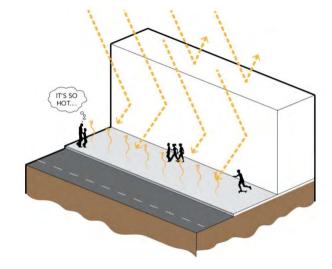
On Ground - Opportunities

Flooding & Water Quality, Water Servicing:

- Reduce impervious area:
 - Install rain tank installations connected to amenities/irrigation
 - Limit hard surface area increases
 - Retrofit hard surface with rain gardens, permeable surfaces
- Improve quality:
 - Install rain tanks, raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Increase water reuse:
 - Install alt supply, rain tanks, grey water systems, passive irrigation

NOTE: SOME TREATMENTS PROVIDE MULTIPLE BENEFITS

On Ground - Opportunities


Urban Heat:

- Reduce heat absorption and increase shade:
 - Increase permeable surfaces and vegetation to replace hard surfaces
 - Select appropriate tree for shade and street size
 - Increase access to green open space and water

Amenity:

- Dominant built form:
 - Strategically locate trees to break up building form
 - Set back upper level high density buildings
- Solar reflection:
 - Implement green walls /roofs
 - Improve building design and material selection

NOTE: SOME TREATMENTS PROVIDE MULTIPLE BENEFITS

On Ground – Opportunities MARRICKVILLE OPEN SPACE: WATER HIGH DENSITY: HEAT & **AMENITY** RESIDENTIAL: WATER OPEN SPACE: INDUSTRIAL: WATER WATER RESIDENTIAL: CAR PARK: **HEAT & AMENITY** WATER RAILWAY: COMMERCIAL: WATER WATER **OPEN SPACE:** COMMERCIAL: RAILWAY: **HEAT & AMENITY** WATER WATER

Review Principals against on ground actions

Review Principals against on ground actions

Circular economy

- 1. Measure performance (i.e. targets) of the water cycle, rather than its individual elements
- 2. Pursue regenerative design by reframing wastes as resources, co-location of land uses and building design

Water servicing

- 3. Defer future augmentations of centralised water services systems
- 4. Preference local scale options; use centralised infrastructure as a last resort

Green grid

- 5. Have the green grid deliver both ecosystem services (amenity, cooling, connectivity) and ecological functions (biodiversity, riparian corridor)
- 6. Pursue greening opportunities where strategically important, whether in private (e.g. setbacks, building designs) or public (linear open space) domains

Waterway health

- 7. Prioritise strategic and collaborative waterway and catchment projects
- 8. Connect the community to their waterways

Flooding

- 9 Plan for resilience
- 10. Balance infrastructure resilience and social resilience to avoid over-reliance on either

Review Principals against on ground actions

Activate town centres and public realm

11. Regard streets as key infrastructure to achieve canopy, infiltration and cooling targets

Buildings

12. Have all buildings part of the catchment topography of the corridor, to harvest water and increase greening

Communities

- 13. Increase water literacy, and encourage water sensitive behaviours
- 14. Enable community interaction with waterways
- 15. Make it easy for community to participate

Governance

- 16. Integrate governance across agencies and disciplines to provide integrated solutions
- 17. Focus on solutions that are best-for-community rather than best-for-agency
- 18. Ensure governance structures are fit-for-purpose.

Review Principals against on ground actions

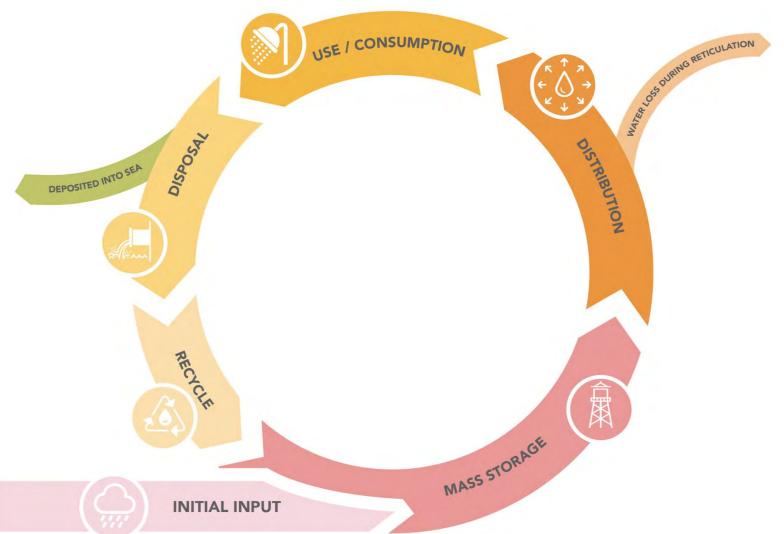
Principals for: Communities, governance and planning

- 1. Integrate fit-for-purpose governance across agencies and disciplines to provide integrated solutions
- 2. Focus on solutions that are best-for-community rather than best-for-agency
- 3. Measure performance (i.e. targets) of the water cycle, rather than its individual elements
- 4. Pursue regenerative design by reframing waste as a resource, co-location of land uses and building design
- 5. Enable community participation and involvement in water sensitive behaviours and connection to waterways

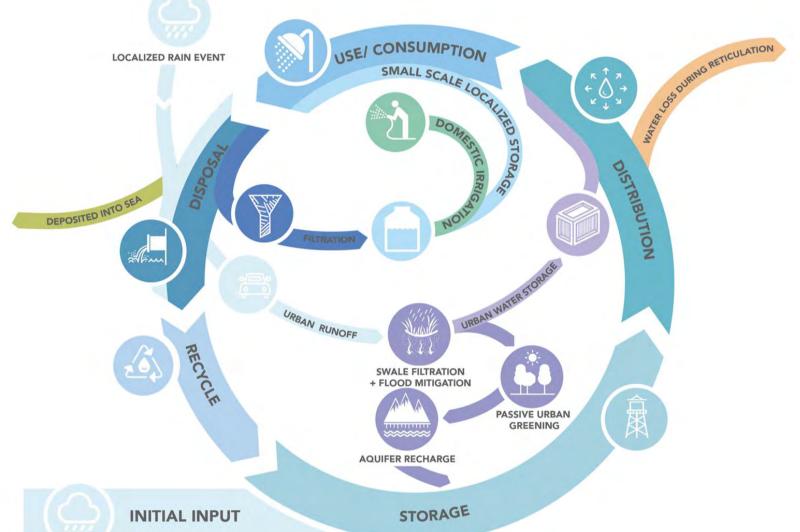
• Principals for: Water cycle management

- 6. Reduce impervious area, improve quality and reduce mains water demand through water sensitive approaches to capture, use, filter and slowly release stormwater
- 7. Plan for flood resilience, balancing structural and social resilience
- 8. Prioritise strategic and collaborative waterway and catchment projects

· Principals for: Urban heat and amenity

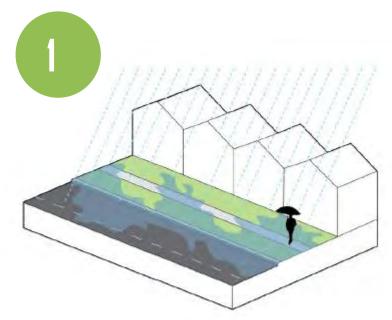

9. Strategically provide for increase in public and private greening to deliver ecosystem services (amenity, cooling, connectivity) and ecological functions (biodiversity, riparian corridor)

Opportunities - Toolkit On Ground Actions - Water Sensitive Cities



Circular Economy

Circular Economy



Opportunities – Residential Typology

Opportunities – Residential Typology

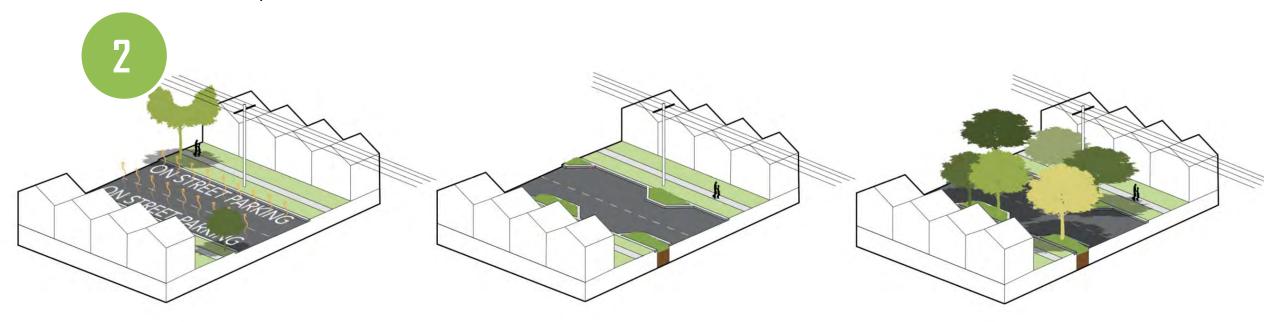
Flooding, Water Quality and Water Servicing

Challenges

Flooding, Water Quality & Water Servicing:

- High impervious area made up of roofs, paths, driveways and roads
- Sediment, nutrient, sewerage overflow flow untreated to waterways
- Low drainage conveyance capacity, low lying land
- Increase in rainfall intensity and sea level rise
- Increased demand on waste water and water supply networks

Opportunities


Flooding & Water Quality, Water Servicing:

- Reduce run off and improve quality by installing rain tanks raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Limit hard surface area increases
- Retrofit hard surface with rain gardens, permeable surfaces
- Increase water reuse by installing alt supply, rain tanks, grey water systems, passive irrigation and connect to amenities/irrigation

Opportunities – Residential Typology

Urban Heat and Amenity

Challenges

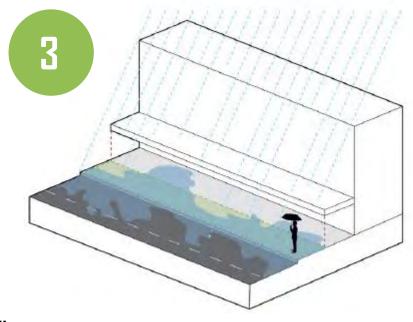
Urban Heat & Amenity:

- Heat absorption through abundance of hard surfaces
- Lack of vegetation and diminishing open space
- Lack of shade due to poor tree selection or lack of street trees
- Built form dominance
- Poor visual and physical connectivity to open space & water
- Poor building design and material selection

Opportunities

Urban Heat & Amenity:

- Reduce heat absorption and increase shade through permeable surfaces and vegetation to replace hard surfaces
- Select appropriate trees for shade and street size
- Break up built form by strategically locating trees



Opportunities – Commercial Typology

Opportunities – Commercial Typology

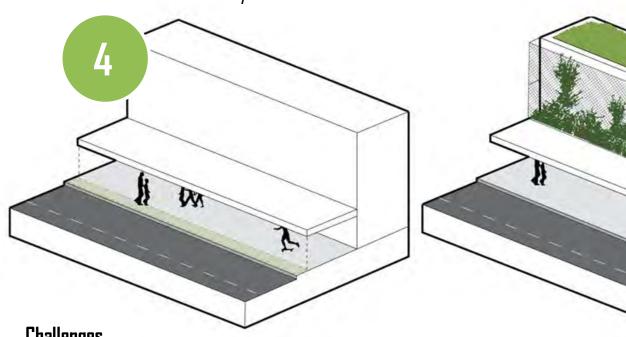
Flooding, Water Quality and Water Servicing

Challenges

Flooding, Water Quality & Water Servicing:

- High impervious area made up of roofs, paths, driveways and roads
- Sediment, nutrient, sewerage overflow flow untreated to waterways
- Low drainage conveyance capacity, low lying land
- Changing climate causing increase in rainfall intensity and sea level rise
- Increased demand on waste water and water supply networks

Opportunities


Flooding & Water Quality & Water Servicing:

- Reduce run off and improve quality by installing rain tanks raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Limit hard surface area increases
- Retrofit hard surface with rain gardens, permeable surfaces
- Increase water reuse by installing alt supply, rain tanks, grey water systems, passive irrigation and connect to amenities/irrigation

Opportunities - Commercial Typology

Urban Heat and Amenity

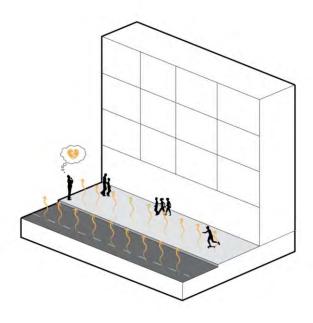
Challenges

Urban Heat & Amenity:

- Heat absorption through abundance of hard surfaces
- Lack of vegetation and diminishing open space
- Lack of shade due to poor tree selection or lack of street trees
- Built form dominance
- Poor visual and physical connectivity to open space & water
- Solar reflection caused by lack of greenery
- Poor building design and material selection

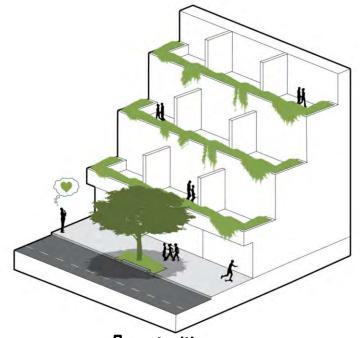
Opportunities

Urban Heat & Amenity:


- Reduce heat absorption and increase shade through permeable surfaces and vegetation to replace hard surfaces
- Select appropriate trees for shade and street size
- Break up built form by strategically locating trees
- Set back upper levels of high density buildings
- Reduce solar reflection through installing green walls / roofs and improve building design and material selection

Opportunities – High Density Typology

Urban Heat and Amenity



Challenges

Urban Heat & Amenity:

- Heat absorption through abundance of hard surfaces
- Lack of vegetation and diminishing open space
- Lack of shade due to poor tree selection or lack of street trees
- Built form dominance
- Solar reflection caused by lack of greenery
- Poor building design and material selection

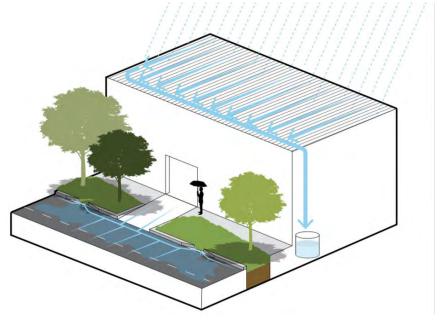
Opportunities

Urban Heat & Amenity:

- Reduce heat absorption and increase shade through permeable surfaces and vegetation to replace hard surfaces
- Select appropriate trees for shade and street size
- Break up built form by strategically locating trees
- Set back upper levels of high density buildings
- Reduce solar reflection through installing green walls / roofs and improve building design and material selection

Opportunities – Industrial Typology

Opportunities – Industrial Typology


Flooding, Water Quality & Water Servicing

Challenges

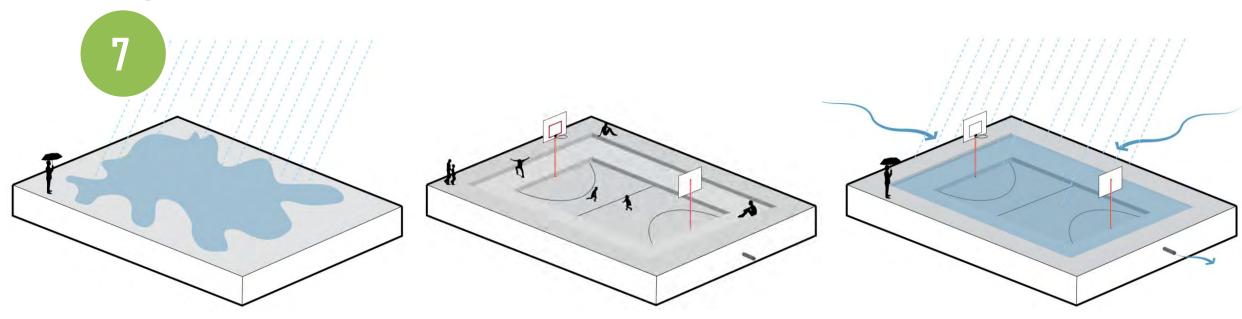
Flooding, Water Quality & Water Servicing:

- High impervious area made up of roofs, paths, driveways and roads
- Sediment, nutrient, sewerage overflow flow untreated to waterways
- Low drainage conveyance capacity, low lying land
- Changing climate causing increase in rainfall intensity and sea level rise

Opportunities

Flooding & Water Quality & Water Servicing:

- Reduce run off and improve quality by installing rain tanks raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Limit hard surface area increases
- Retrofit hard surface with rain gardens, permeable surfaces



Opportunities – Open Space Typology

Opportunities – Active Open Space Typology

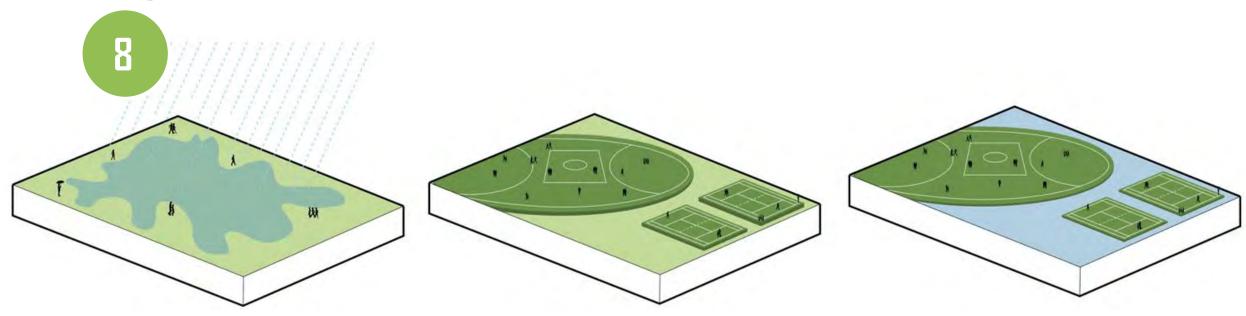
Flooding

Challenges

Flooding:

- Low drainage conveyance capacity, low lying land
- · Changing climate causing increase in rainfall intensity and sea level rise
- Poor overland flow conveyance caused by landform

Opportunities


Flooding:

- Create dual function active open space storage basins
- Reduce run off and improve quality upstream by installing rain tanks raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Limit hard surface area increases

Opportunities – Active Open Space Typology

Flooding

Challenges

Flooding:

- Low drainage conveyance capacity, low lying land
- · Changing climate causing increase in rainfall intensity and sea level rise
- Poor overland flow conveyance caused by landform

Opportunities

<u>Flooding:</u>

- Create dual function active open space storage basins
- Reduce run off and improve quality upstream by installing rain tanks raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs

Opportunities - Passive Open Space Typology

Flooding, Water Quality, Urban Heat and Amenity

Challenges

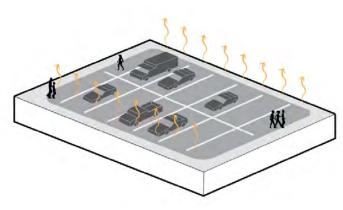
Flooding, Water Quality, Urban Heat & Amenity:

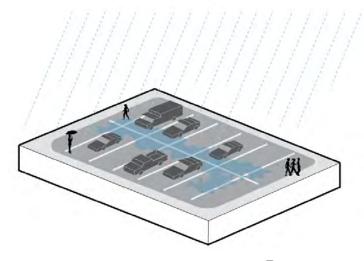
- High impervious area made up of roofs, paths, driveways and roads
- Sediment, nutrient, sewerage overflow flow untreated to waterways
- Changing climate causing increase in rainfall intensity and sea level rise
- Lack of vegetation and diminishing open space
- Poor visual and physical connectivity to open space & water

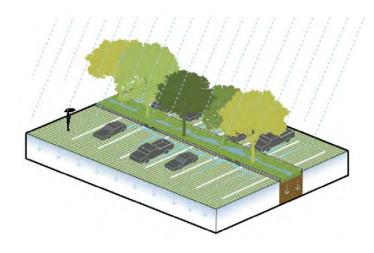
Opportunities

Flooding, Water Quality, Urban Heat & Amenity:

- Create passive open space with ecological functions
- Reduce heat absorption and increase shade through permeable surfaces and vegetation
- Increase access to green open space and water
- Break up built form by strategically locating trees


Opportunities – Car Park Typology




Opportunities – Car Park Typology

Flooding, Water Quality, Urban Heat and Amenity

Challenges

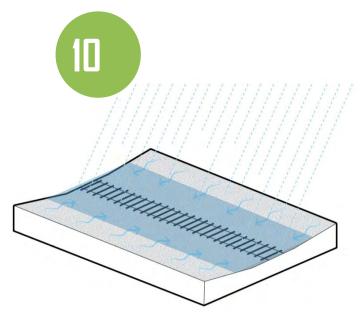
Flooding, Water Quality, Urban Heat & Amenity:

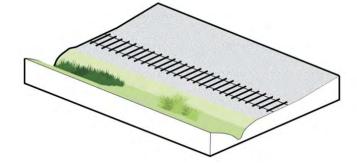
- High impervious area causing sediment, nutrient flow untreated to waterways
- Changing climate causing increase in rainfall intensity and sea level rise
- Lack of vegetation and diminishing open space
- Heat absorption through abundance of hard surfaces
- Lack of vegetation and diminishing open space
- Lack of shade due to poor tree selection or lack of street trees

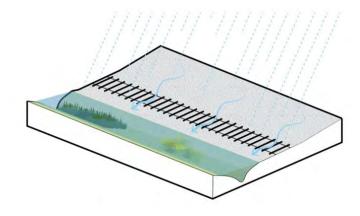
Opportunities

Flooding, Water Quality, Urban Heat & Amenity:

- Reduce run off and improve quality by installing raingardens, swales, wetlands, sedimentation basins, permeable paving, GPTs
- Limit hard surface area increases
- Reduce heat absorption and increase shade through permeable surfaces and vegetation
- Reduce heat absorption and increase shade through permeable surfaces and vegetation to replace hard surfaces




Opportunities – Railway Typology



Opportunities - Railway Typology

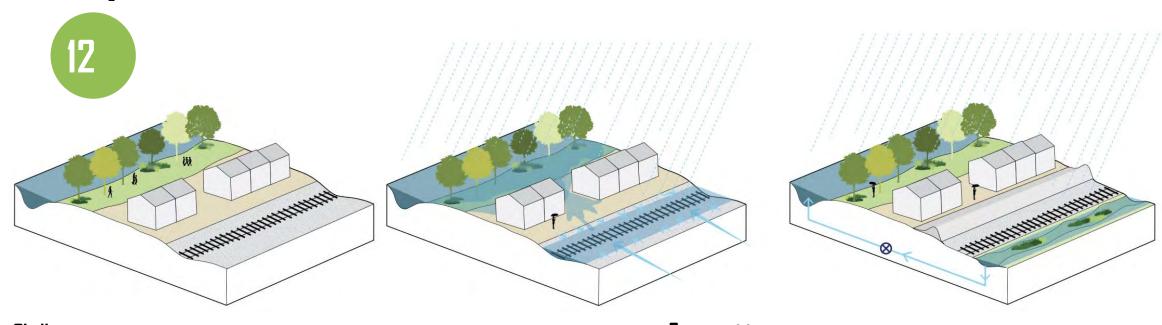
Flooding and Water Quality

Challenges

Flooding & Water Quality:

- Low drainage conveyance capacity, low lying land
- Changing climate causing increase in rainfall intensity and sea level rise
- Poor overland flow conveyance caused by land form

Opportunities


Flooding & Water Quality:

- Reduce run off and improve quality by installing raingardens, swales, wetlands, sedimentation basins
- Improve conveyance through engineered swale design

Opportunities - Railway Typology

Flooding

Challenges

Flooding & Water Quality:

- Sediment and nutrient flowing untreated to waterway
- Low drainage conveyance capacity, low lying land
- Changing climate causing increase in rainfall intensity and sea level rise
- · Poor overland flow conveyance caused by land form

Opportunities

Flooding & Water Quality:

- Reduce run off and improve quality by installing raingardens, swales, wetlands, sedimentation basins
- Improve conveyance through engineered levee / swale / pump design

