Sizing the Biofilter

things to consider...

FAWB Solution Facility for Advancing Water Biofiltration

EDAW

AECOM

MONASH University

Outline

- Typical approach to sizing
- Key factors to consider
 - 1. Design objectives
 - 2. Interactions between Ks and sizing
 - 3. Robustness

AECOM

ΙΟΑΝ

4. Vegetation selection

FAWB Facility for Advancing Water Biofiltration

Typical approach

What are our objectives?

- Pollutant load reduction ?
- Runoff reduction ?
 Volume
 - Frequency

AFCOM

• Pre-filtering for stormwater reuse?

😹 MONASH University

Interaction of area, depth & Ks

Designing robust systems

- Design using all 3 parameters:
 - Ks
 - Area

AECOM

DAN

- Detention depth
- Consider what will happen if Ks drops

FAWB

Facility for Advancing

Water Biofiltration

MONASH University

Field results: Hydraulic conductivity

- Observed '2 groups':
 - Those with high initial conductivity (halved)
 - Those with low initial conductivity (unchanged)

Lab results: 125 biofilters – 60 weeks of 'intense dosing'

Influence of loading ~ *biofilter size*

• Laboratory study (Le Coustumer et al., 2007)

High sediment C and high hydraulic loading (= small biofilter relative to catchment) decrease K

Facility for Advancing Water Biofiltration

ECOM

😹 MONASH University

Using area and ponding depth to 'buffer' variations in Ks

Given these results...

 Design and model based on Ks of <u>half</u> the design value

AECOM

ΙΙΑΛ

Properties of Bio-Retention	×
Location Bio-Retention	
Inlet Properties	
Low Flow By-Pass (cubic metres per sec	:) 0.000
High Flow By-pass (cubic metres per sec	c) 100.000
Storage Properties	
Extended Detention Depth (metres)	0.25
Surface Area (square metres)	3.4
Seepage Loss (mm/hr)	0.36
Infiltration Properties	
Filter Area (square metres)	4.8
Filter Depth (metres)	1.0
Filter Median Particle Diameter (mm)	0.45
Saturated Hydraulic Conductivity (mm/h	r) <u>90</u>
Depth below underdrain pipe (% of Filter	Depth) 0.0 Enter t
Outlet Properties	
Overflow Weir Width (metres)	2.0
Fluxes No	tes More
🗶 Cancel <= Ba	ck 🖌 <u>F</u> inish

FAWB Facility for Advancing Water Biofiltration

Ideas to increase effective size

• Breaking up the catchment

FDAW

AECOM

FAWB Facility for Advancing Water Biofiltration

MONASH University

Ideas to increase effective size

Breaking up the catchment

- Increase ponding depth
 - Use novel design to ensure safety

AECOM

FDAW

FAWB Facility for Advancing Water Biofiltration

Biofilter Sizing: Key messages

- Infiltration performance is a function of 3 design parameters
 - Ks, Area, Ponding Depth
 - Systems must be designed/modelled in an integrated way considering all 3 factors
- Larger systems will be more robust against variations in Ks
 - consider breaking up catchment if area is limited

FAWB

Facility for Advancing

MONASH University

Consider hydrologic effectiveness during design