Abstract

Taking the city of Xiamen, China, as an example, we used thermal infrared remote sensing to detect thermal pollution, and examined its relationship to energy consumption and the industrial economy. Monthly changes in 2002 and dynamics throughout the period of rapid urbanization (1987–2007) are analysed. It is found that seasonal variation led to distinct shapes and sizes of thermal pollution areas, and winter thermal pollution was highly indicative of industrial and energy transformation sources. Industrial enterprises were the dominant sources of winter thermal pollution in Xiamen. The number and ratio of industrial thermal pollution sources increased stably in the earlier years, and dramatically in the later period (2002–2007), attributable to the effects of China entering the World Trade Organization. Linear regression shows that the number of thermal pollution sources was strongly correlated with several factors of the industrial economy and energy consumption, including industrial outputs, industrial enterprise numbers, LPG and electricity. Related mitigation measures are also discussed. This research builds a link between remote sensing-detected thermal pollution information and statistical energy consumption data, as well as industrial economy statistics. It thereby enhances understanding of the relationship between urbanization, industrialization, energy consumption and related environmental effects.

 

Note: Journal articles and conference papers (and links where available) are available under open access arrangements where possible. Otherwise please contact your institution’s library, the authors, or publishers to organise full access.